当前位置:首页 > AI > 正文

机器学习em算法,原理、运用与完成

时间:2024-12-28阅读数:8

EM算法(ExpectationMaximization Algorithm)是一种在概率模型中寻觅参数最大似然估量或许最大后验估量的算法。它常用于含有隐变量的概率模型参数的估量问题,如混合模型、隐马尔可夫模型等。

EM算法包括两个过程:E步(希望步)和M步(极大化步)。

1. E步(希望步):在E步中,咱们依据当时的模型参数值,核算每个样本归于每个隐变量的后验概率。这实际上是核算每个样本在给定当时参数下的希望值。

2. M步(极大化步):在M步中,咱们运用E步核算得到的后验概率来更新模型参数,使得似然函数最大化。

这两个过程替换进行,直到模型的参数收敛,即参数的更新改变十分小。

EM算法的强壮之处在于,它可以在不知道隐变量详细值的情况下,经过迭代的办法找到模型参数的最大似然估量。这使得它在处理含有隐变量的杂乱模型时十分有用。

深化解析EM算法:原理、运用与完成

在机器学习范畴,EM算法(Expectation-Maximization Algorithm)是一种重要的迭代优化算法,广泛运用于含有隐变量或不完全数据的概率模型中。本文将深化解析EM算法的原理、运用场景以及完成办法。

EM算法是一种迭代算法,首要用于在含有隐变量或不完全数据的概率模型中,估量参数的最大似然估量(MLE)或最大后验概率估量(MAP)。它经过迭代更新参数,将原问题分化为两个过程:希望过程(E步)和最大化过程(M步),然后逐步迫临参数的最大似然估量。

EM算法的中心思维是经过处理躲藏变量,优化含有不完全数据的似然函数。假定咱们有观测到的数据集X和躲藏的(未观测到的)数据Z,方针是经过观测数据X来估量模型的参数theta。因为躲藏变量的存在,咱们的似然函数并不直接对X易于优化。

EM算法经过以下过程完成参数估量:

初始化参数theta。

履行E步:依据当时参数theta,核算每个数据点归于每个隐变量的概率。

履行M步:依据E步核算的概率,更新参数theta。

重复过程2和3,直到参数theta收敛或满意中止条件。

高斯混合模型(GMM):用于描绘数据的散布,经过EM算法估量混合模型的参数。

隐马尔可夫模型(HMM):用于处理序列数据,经过EM算法估量模型参数。

贝叶斯网络:用于表明变量之间的依靠联系,经过EM算法估量网络参数。

因子分析:用于降维和变量分化,经过EM算法估量因子载荷。

以下是一个简略的EM算法完成示例,以高斯混合模型为例:

```python

import numpy as np

def em_gmm(X, k, max_iter=100):

\

本站所有图片均来自互联网,一切版权均归源网站或源作者所有。

如果侵犯了你的权益请来信告知我们删除。邮箱:[email protected]

猜你喜欢

  • 机器学习 在线学习,敞开智能年代的学习之旅

    机器学习在线课程引荐1.吴恩达的“机器学习”公开课渠道:Coursera言语:英语,供给中文字幕特色:这是最受欢迎的机器学习入...

    2024-12-30AI
  • 机器学习小样本,机器学习中的高效处理方案

    机器学习小样本问题是指在运用机器学习算法时,数据集的样本数量十分有限的状况。在传统的大数据年代,机器学习算法一般依赖于很多的数据来练习模型,然后进步模型的精确性...

    2024-12-30AI
  • ai归纳操练,从根底到进阶的全面攻略

    1.图画辨认与分类:运用深度学习模型,如卷积神经网络(CNN),对图画进行分类,如辨认手写数字、动物、植物等。2.文本剖析:运用自然语言处理技术,如词嵌入、...

    2024-12-30AI
  • ai英语,AI技能怎么重塑英语学习体会

    1.英语学习软件:许多英语学习软件都使用了AI技能,如智能语音辨认、自然言语处理和机器学习,来协助用户进步英语听、说、读、写才能。例如,Duolingo、Ro...

    2024-12-30AI
  • ai艺术字,构思无限,规划新潮流

    ai艺术字,构思无限,规划新潮流 ai艺术字,构思无限,规划新潮流 ai艺术字,构思无限,规划新潮流

    AI艺术字一般指的是运用人工智能技能来规划和生成具有艺术感的字体。这种技能可以主动生成一起、构思和特性化的字体,为规划师供给更多挑选和构思。AI艺术字的运用规模广泛,包含平面规划、UI/UX规划、广告规划、网页规划等。在生成AI艺术字时,人工智能模型会依据输入的文本内容、风格偏好、字体类型等参数来生...。

    2024-12-30AI